
www.manaraa.com

International Journal of Enterprise Information Systems, 3(1), �1-��, January-March 2007 �1

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

ABSTRACT

Data quality is becoming an increasingly important issue in environments characterized by
extensive data replication. Among such environments, this article focuses on cooperative in-
formation systems (CISs), for which it is very important to declare and access quality of data.
The article describes a general methodology for evaluating quality of data, and the design of
an architectural component, named quality factory, that implements quality evaluation of XML
data. The detailed design and implementation of a further service, named data quality broker, are
presented. The data quality broker accesses data and related quality distributed in the CIS and
improves quality of data by comparing different copies present in the system. The data quality
broker	has	been	implemented	as	a	peer-to-peer	service	and	a	set	of	experiments	on	real	data	
show its effectiveness and performance behavior.
	
Keywords: cooperative information systems; data quality; peer-to-peer

INTRODUCTION
Data quality is a complex concept defined

by various dimensions such as accuracy, cur-
rency, completeness, and consistency (Wang &
Strong, 1996). Recent research has highlighted
the importance of data quality issues in various
contexts. In particular, in some specific environ-
ments characterized by extensive data replica-
tion high quality of data is a strict requirement.
Among such environments, this article focuses
on Cooperative Information Systems.

Cooperative information systems (CISs)
are all distributed and heterogeneous informa-
tion systems that cooperate by sharing infor-
mation, constraints, and goals (Mylopoulos &
Papazoglou, 1997). Quality of data is a neces-
sary requirement for a CIS. Indeed, a system
in the CIS will not easily exchange data with
another system without knowledge of the qual-
ity of data provided by the other system, thus
resulting in a reduced cooperation. Also, when
the quality of exchanged data is poor, there is

Measuring	and	Diffusing	Data	
Quality	in	a	Peer-to-Peer	

Architecture
Diego Milano, Università degli Studi di Roma, Italy

Monica Scannapieco, Università degli Studi di Roma, Italy
Tiziana Catarci, Università degli Studi di Roma, Italy

IDEA GROUP PUBLISHING

This paper appears in the publication, International Journal of Enterprise Information Systems, Volume 3, Issue 1
edited by Angappa Gunasekaran © 2007, Idea Group Inc.

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITJ3503

www.manaraa.com

�2 International Journal of Enterprise Information Systems, 3(1), �1-��, January-March 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

a progressive deterioration of the overall data
quality in the CIS. On the other hand, the high
degree of data replication that characterizes a
CIS can be exploited for improving data qual-
ity, as different copies of the same data may be
compared in order to detect quality problems
and possibly solve them.

In Scannapieco, Virgillito, Marchetti,
Mecella, and Baldoni (2004) and Mecella et
al. (2003), the DaQuinCIS architecture is de-
scribed as an architecture managing data quality
in cooperative contexts, in order to avoid the
spread of low-quality data and to exploit data
replication for the improvement of the overall
quality of cooperative data.

In this article we will describe the design
of a component of our system named as, quality
factory. The quality factory has the purpose of
evaluating quality of XML data sources of the
cooperative system. While the need for such a
component had been previously identified, this
article first presents the design of the quality
factory and proposes an overall methodology to
evaluate the quality of XML data sources.

Quality values measured by the quality
factory are used by the data quality broker. The
data quality broker has two main functionalities:
1) quality brokering that allows users to select
data in the CIS according to their quality; 2)
quality improvement that diffuses best quality
copies of data in the CIS.

As a further research contribution, this
article will focus on the design and imple-
mentation features of the data quality broker
as a Peer-to-Peer (P2P) system. More specifi-
cally, the data quality broker is implemented
as a peer-to-peer distributed service: each
organization hosts a copy of the data quality
broker that interacts with other copies. While
the functional specification of the data quality
broker is not a contribution of this article, and
has been presented in (Scannapieco et al., 2004;
Mecella et al., 2003), its detailed design and
implementation features as a P2P system are
a novel contribution of this article. Moreover,
we will present some results from tests made
to prove the effectiveness and efficiency of our
system. The data quality broker is implemented

by a peer-to-peer architecture in order to be as
less invasive as possible in introducing qual-
ity controls in a cooperative system. Indeed,
cooperating organizations need to save their
independency and autonomy requirements.
Such requirements are well-guaranteed by
the P2P paradigm which is able to support the
cooperation without necessarily involving con-
sistent re-engineering actions; in the section on
Related Work, we will better detail this point,
comparing our choice with a system that instead
does not adopt a P2P architecture.

The rest of this article is organized as
follows. The second section describes the main
features of the quality factory and of the data
quality broker. The third section presents the
overall methodology and the fourth section
details the architectural design of the quality
factory, by focusing on the case of XML data
sources. The fifth section describes the detailed
design and implementation of the data qual-
ity broker as a peer-to-peer system, and each
module of its component architecture. The set
of performed experiments is described in the
sixth section. Finally, related work and conclu-
sions are presented in the seventh and eighth
section respectively.

THE	DATA	QUALITY	BROKER	
AND	QUALITY	FACTORY:	

GENERALITIES
In this section, we provide an overview of

the main functionality of the data quality broker
and we detail the interaction of such module
with the quality factory, the design of which is
provided in the third and fourth sections. The
component architecture and implementation
details of the data quality broker are instead
described in the fifth section.

The	Data	Quality	Broker	
Functionality

In the DaQuinCIS architecture, all coop-
erating organizations export their application
data and quality data (i.e., data quality dimen-
sion values evaluated for the application data)
according to a specific data model. The model

www.manaraa.com

International Journal of Enterprise Information Systems, 3(1), 61-84, January-March 2007 63

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

for exporting data and quality data is referred to
as Data and Data Quality (D²Q) model (Mecella
et al., 2003). The data quality broker allows us-
ers to access data in the CIS according to their
quality. Specifically, the data quality broker
performs two tasks, namely query processing
and quality improvement.

The data quality broker performs query
processing according to a global-as-view (GAV)
approach by unfolding queries posed over a
global schema, that is, replacing each atom
of the original query with the corresponding
view on local data sources (Ullman, 1997;
Lenzerini, 2002). Both the global schema and
local schemas exported by cooperating orga-
nizations are expressed according to the D²Q
model. The specific way in which the mapping
is defined stems from the idea of performing a
quality improvement function during the query
processing step. Global schema concepts are
defined by means of queries over the local
sources that retrieve all data present in the
system that can populate such concepts. When

retrieving results, data coming from different
sources can be compared and a best quality
copy can be constructed. Specifically, in our
setting, data sources have distinct copies of
the same data with different quality levels,
that is, there are instance-level conflicts. We
resolve these conflicts at query execution time
by relying on quality values associated to data:
when a set of different copies of the same data
are returned, we look at the associated quality
values, and we select the copy to return as a
result on the basis of such values. More details
on the algorithm implemented for processing
queries can be found in (Scannapieco et al.,
2004). The best quality copy is also diffused
to other organizations in the CIS as a quality
improvement feedback.

Interaction Between the Data Quality
Broker and the Quality Factory

The quality factory has the purpose of
evaluating the quality of data stored by the
cooperating sources. Such values will be used to

Figure 1. Interaction between the data quality broker and the quality factory

Back-end
Data

Back-end
Data

Q
uality

Factory
Q

uality
Factory

organizationi

D
ata Q

uality
Broker

D
ata Q

uality
Broker

querying

feedback

W
rapper

Back-end
Data

Back-end
Data

Q
uality

Factory
Q

uality
Factory

organizationN

D
ata Q

uality
Broker

D
ata Q

uality
Broker

querying

feedback

W
rapper

Back-end
Data

Back-end
Data

Q
uality

Factory
Q

uality
Factory

organizationN

D
ata Q

uality
Broker

D
ata Q

uality
Broker

querying

feedback

W
rapper

D
ata Q

uality
Broker

D
ata Q

uality
Broker

queryingquerying

feedbackfeedback

W
rapper

Back-end
Data

Back-end
Data

Q
uality

Factory
Q

uality
Factory

organization1

D
ata Q

uality
Broker

D
ata Q

uality
Broker

querying

feedback

W
rapper

Back-end
Data

Back-end
Data

Q
uality

Factory
Q

uality
Factory

organization1

D
ata Q

uality
Broker

D
ata Q

uality
Broker

querying

feedback

W
rapper

D
ata Q

uality
Broker

D
ata Q

uality
Broker

queryingquerying

feedbackfeedback

W
rapper

peer-to-peer
deployment of

the broker

Back-end
Data

Back-end
Data

Q
uality

Factory
Q

uality
Factory

organizationi

D
ata Q

uality
Broker

D
ata Q

uality
Broker

querying

feedback

W
rapper

Back-end
Data

Back-end
Data

Q
uality

Factory
Q

uality
Factory

organizationi

D
ata Q

uality
Broker

D
ata Q

uality
Broker

querying

feedback

W
rapper

D
ata Q

uality
Broker

D
ata Q

uality
Broker

queryingquerying

feedbackfeedback

W
rapper

Back-end
Data

Back-end
Data

Q
uality

Factory
Q

uality
Factory

organizationN

D
ata Q

uality
Broker

D
ata Q

uality
Broker

querying

feedback

W
rapper

Back-end
Data

Back-end
Data

Q
uality

Factory
Q

uality
Factory

organizationN

D
ata Q

uality
Broker

D
ata Q

uality
Broker

querying

feedback

W
rapper

D
ata Q

uality
Broker

D
ata Q

uality
Broker

queryingquerying

feedbackfeedback

W
rapper

Back-end
Data

Back-end
Data

Q
uality

Factory
Q

uality
Factory

organization1

D
ata Q

uality
Broker

D
ata Q

uality
Broker

querying

feedback

W
rapper

Back-end
Data

Back-end
Data

Q
uality

Factory
Q

uality
Factory

organization1

D
ata Q

uality
Broker

D
ata Q

uality
Broker

querying

feedback

W
rapper

D
ata Q

uality
Broker

D
ata Q

uality
Broker

queryingquerying

feedbackfeedback

W
rapper

peer-to-peer
deployment of

the broker

www.manaraa.com

�� International Journal of Enterprise Information Systems, 3(1), �1-��, January-March 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

populate the D²Q model with the quality values
associated to the integrated data. Therefore,
the principal role of the quality factory is to
measure such quality values in order to make
them accessible by the data quality broker.
More specifically, at query time the data qual-
ity broker accesses quality values in order to
solve instance level conflicts, and thus returning
an answer to the user query. At query time, a
further interaction may occur, as the data qual-
ity broker can send better data and associated
quality values to specific organizations in the
CIS, while performing the improvement func-
tionality. In Figure 1, the interactions between
the data quality broker and the quality factory
are shown. Notice also the P2P deployment of
the data quality broker that will be discussed
in the fifth section.

The	Data	Quality	Factory
The quality factory has the task of measur-

ing the quality of the data that each organization
makes available to the others. In this section
we introduce the data quality evaluation meth-
odology which is implemented by the quality
factory. We then make some considerations

about the architectural design of a quality fac-
tory module.

The definition of a data quality evaluation
methodology is dependent on the data models
used by organizations for their application data.
As an example, the types of integrity constraints
that are defined for the relational data model
are of course different from the ones defined
for a semi-structured data model, like the XML
data model.

We focus on the case of data sources
adopting the XML data model, showing how
appropriate data quality measures can be de-
vised in this case. We first start from a generic
methodology, then we specify the methodol-
ogy for XML data sources and we describe an
example of definition of suitable metrics for
quality evaluation.

A	Data	Quality	Evaluation
Methodology

The quality evaluation methodology is
shown in Figure 2. The main idea is to measure
data quality not by relying on the original schema
of data sources, but through a comparison with
a more constraining schema.

Figure 2. Methodology for quality evaluation

Domain Domain
Domain Knowledge

MAPPING

C�B�A�

C3B3A3

C2B2A2

C1B1A1

C�B�A�

C3B3A3

C2B2A2

C1B1A1

C��A �B

C33A 3B

C22A 2B

C11A 1B

C��A �B

C33A 3B

C22A 2B

C11A 1B

Schema

Ontology

Data
Quality
Metrics

A

A

B

C

C

B

www.manaraa.com

International Journal of Enterprise Information Systems, 3(1), �1-��, January-March 2007 ��

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

Indeed, many data quality problems are
caused by the fact that data models and data
management systems are often too weak at
expressing several constraints that nonetheless
exist in reality. On one hand, data manage-
ment systems have the possibility to avoid
some quality errors, such as the ones that can
be introduced during data entry processes, or
depend on applications behavior. As an example,
relational DBMSs can perform various checks
at data entry or when certain operations are
performed; XML documents can be validated
against a DTD or other kind of schema, and so
forth. On the other hand, database management
systems are currently not able to enforce all the
constraints that must hold on the data in order
for them to be error-free and consistent; both
relational DBMSs and XML data storage sys-
tems are examples of the missing enforcement
of such a wide range of constraints.

This may be due to failure of data manage-
ment systems to support enforcement of some
constraints, or in limitations of the expressivity
of the data models used, to actually represent
data that fail to support some of the constraints
holding on the domain even if they are known.
Good design approaches exist for relational
databases. Such approaches usually start with
a requirement analysis. The result of this phase
of the design is a conceptual model that tries to
capture all the details concerning the domain
involved, including any possible constraint that
should be enforced in order to guarantee the
consistency of the database during the lifetime of
the application. All the domain and application
specific knowledge that is necessary to run the
application is usually formalized through a high
level, expressive language like the Entity Re-
lationship model. However, the final relational
schema cannot enforce some of the constraints
identified during this process.

Furthermore, missing constraints can also
be due to poor schema design. Conceptual XML
design, for instance, is still an open problem
that only recently has received attention from
the research community (Conrad, Scheffner,
& Freytag, 2000).

The methodology we propose aims at iden-
tifying data quality problems that can be imputed
to inconsistency with “constraints” that should
hold but are not actively enforced on data. In
order to evaluate data quality a comprehensive
schema is first created. Such a schema is built
by complementing the knowledge contained
in the original data schema with knowledge
representing the specific application domain,
gathered through a domain analysis activity
(e.g., performed by a domain expert).

The language used should be expressive
enough to allow representation of more complex
constraints than those already holding on the
data to be analyzed. Besides being expressive,
the modelling language used to represent such
knowledge should be formal and have a machine
processable format, in order to be used in an
automated quality evaluation process, that is, by
the quality factory module. We call the resulting
representation reference	ontology. In the fourth
section we will give details about the modelling
language used for the reference ontology.

In order to allow evaluation of data based
on this “rich” representation, it must be related
to the schema describing the data. The corre-
spondence between the original data schema
and the ontology is established by a mapping,
as detailed in the fourth section.

The main advantage of this approach is
that referring to this high-level, formalized
representation of the reality of interest provides
a homogeneous and effective way to define
metrics for quality evaluation.

Reference	Ontology	and	Mapping
The reference ontology used in the above

described methodology must be expressed in
a language rich enough to model complex ap-
plication domains and represent a wide range
of constraints. Conceptual data models (Hull &
King, 1987) like the Entity-Relationship model
have been initially introduced to help the schema
designer, and are capable of expressing rich
constraints on the modelled reality. Lately, it has
been shown that such models can be formalized
through appropriate expressive description log-
ics (Baader, Calvanese, McGuinness, Nardi, &

www.manaraa.com

�� International Journal of Enterprise Information Systems, 3(1), �1-��, January-March 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

Patel-Schneider, 2003), thus making available
for them the basic logical reasoning services
characterizing such description languages. A
detailed formal description of a full-fledged
ontology language to be used for this task is
outside the scope of this article. Therefore, we
introduce a simplified language, whose features
are indeed sufficient to describe our methodol-
ogy and to show an example of its application
(see the fourth section).

REFERENCE	 ONTOLOGY	
In the following, we will denote a refer-

ence ontology with Σ.
Syntactically, Σ is a tuple < C, Prop, R

> where:

•	 C is a set of Concepts.
•	 For each c	∈ C, Prop(c) denotes a set

of named properties. We assume that on
properties it is possible to express cardi-
nality constraints that must be satisfied
by instances of the concept. In particular,
properties may be defined as optional or
mandatory.

•	 R is a set of binary relationships of the
form < c, c′ > where c and c′ are concepts
in C.

For the relationships in R, we require that
some constraints can be expressed. In particular,
given a relationship r = < c, c′ > in the ontology,
we assume the ontology formalism allows:

•	 To specify cardinality constraints on both
concepts c and c′.

•	 To specify a direction for the relationship.
A relationship r =< c,c′ > on which a
direction is defined is said to be a parent-
child relationship. The concept c is said
to have the role of parent and the concept
c′ is said to have the role of child.

•	 To specify a constraint over two proper-
ties p and p′, belonging respectively to
Prop(c) and Prop(c′), such that related
instances of c and c′ will have the same
value for p and p′. A relationship on
which this constraint holds is named as

join relationship. If r =< c, c′ > is a join
relationship with an equality constraint
over the properties p of c and p′ of c′, we
will also write r =< c : p, c′ : p′ >.

Though we have introduced only binary
relationships, a generalization to higher arity
relationships is straightforward. Besides creat-
ing the reference ontology, it is also necessary
to establish a mapping between the original
data schema and the ontology itself. This map-
ping links the original data to the ontology,
thus allowing evaluating constraints holding
on the ontology over the data populating the
original schema. Starting from the ontology
and the mapping, appropriate quality metrics
can be defined. The language used to describe
the reference ontology can be the same for
each organization; instead, the mapping can
be defined in several ways and is dependent on
the particular data model and schema language
used by each organization. Different mapping
formalisms must be devised for example for
the relational model, the various XML schema
languages and so on.

In the following sections, we first illustrate
a general architecture for the quality factory
module based on the proposed methodology.
Then, we show how the general architecture of
the quality factory can be tailored for a specific
data model, namely the XML data model. We
also introduce a specific mapping formalism
to map from the DTD schema language to our
ontology language, and we show how quality
metrics appropriate for such data model can be
defined. In particular, we provide an example
of the definition of metrics related to the com-
pleteness quality dimension.

The possibility of defining these metrics
is of particular interest, since quality metrics
for XML data have not yet been devised. The
main motivations for choosing XML are: 1)
DTD, which a widely diffused XML schema
formalism, is particularly weak at expressing
some constraints that are essential to ensure
the quality of XML data; 2) while longtime
established good design methodologies exist
for the relational case, the problem of defining

www.manaraa.com

International Journal of Enterprise Information Systems, 3(1), �1-��, January-March 2007 �7

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

guidelines for XML schema design has been
only recently addressed (Arenas & Libkin,
2004) and is far to be solved.

The approach described so far shares some
ideas with (Milano, Scannapieco, & Catarci,
2005), where the purpose was a different one,
namely cleaning XML data. Instead, here we
focus on the evaluation of XML data quality
in the context of a comprehensive system for
data quality management.

Generic	Architecture	of	the	
Quality	Factory

The following considerations justify
the architecture in order for a quality factory
module described in this section. First, the or-
ganizations participating to a CIS might employ
heterogeneous data models to store their data.
Thus, appropriate quality metrics and quality
evaluation strategies must be devised, that take
into account such different models. Second, a
quality factory not only has the duty to evaluate
quality values, but also to manage such values
and maintain a connection between such values
and the data from which they were derived.
After performing an evaluation of the quality
of a data source, the quality factory stores the
resulting quality values, making them available
to a wrapper module which is responsible for
presenting both data and quality trough the
D²Q data model. At this stage, however, quality
values are not related to data by a D²Q repre-
sentation, as such representation is only built
by the wrapper at query time. It is thus neces-
sary to solve the problem of how to maintain
a connection between the original data values
and the evaluated quality values. We describe a
possible solution to this problem for the XML
case in the fourth section.

An alternative solution allows the quality
factory to interact directly with data already
represented through the (data part of the) D²Q
model. This choice would indeed simplify the
architecture of the system, as the quality factory
would interact with a single data model and
thus, being independent on data and schema
heterogeneity, it could be used without changes
within different organizations. Unfortunately,

this option has some serious drawbacks. First,
as previously explained, organizations export
their data in the D²Q model simply by imple-
menting a wrapper that allows access to the data
in that format. This works coherently with the
spirit of CISs, in which organizations cooperate
preserving their independence, and can maintain
their own data models. Data is never actually
stored in the D²Q model, but it is only trans-
lated to this model at query time. If the quality
factory interacted directly with the model, it
should query the data trough the wrapper and
then store the computed quality values, while
preserving the links to original data values.
This strategy imposes too strict constraints on
the implementation of the wrapper. The choice
of having the quality factory interact directly
with the D²Q model has a second important
drawback, namely quality evaluation would
be performed independently from the original
data model used by organizations to store their
own data. Instead, we believe that structural
properties of the underlying data models should
be taken into proper account when evaluating
quality. If all data are translated to a single model
before quality evaluation, much information
on the data structures and on the constraints
would be lost.

Quality
Storage

Quality Evaluator

D
2Q

 W
rapper

Quality metrics

Mapping Reference
OntologyData

Quality Factory Module

organization (source)

data to
quality

association

Quality
Storage

Quality Evaluator

D
2Q

 W
rapper

Quality metrics

Mapping Reference
OntologyData

Quality Factory Module

organization (source)

data to
quality

association

Figure 3. The logical architecture of the qual-
ity	factory

www.manaraa.com

�� International Journal of Enterprise Information Systems, 3(1), �1-��, January-March 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

A generic logical architecture for a quality
factory module is presented in Figure 3. The
figure shows the main logical components of
the quality factory module, namely a quality
storage, a quality evaluator, and a set of quality
metrics. The figure also shows how the qual-
ity factory interacts with the data stored at the
source. The interaction is driven by a reference
ontology and mapping. The reference ontology
and the mapping are built by a domain expert
and they are organization specific. The quality
storage is (logically) linked to the data stored
inside the organizations. The details of such
connection depend on the specific way the data
storage itself is designed. When accessing a
source, the wrapper module also accesses the
quality storage and exploits this logical connec-
tion to retrieve the relevant quality values. The
principal features of each module are briefly
described in the following

Quality Storage
 The quality storage is a logical component

inside the quality factory that has the role of
storing quality values evaluated by the qual-
ity evaluator component. The most important
aspect in the design of a quality storage for a
particular data model is how to maintain the
connection between the data values and the
quality values. In this article, we show a pos-
sible solution to this problem for an XML data
source. A notable difference between the XML
model and the relational one is that pieces of
data must not only be identified with regard
to their values, but also with regard to their
position in the XML tree, as we describe in
the fourth section.

Quality	Evaluator
The quality evaluator component has the

role of actually accessing the data stored in the
organization and assessing their quality. This is
done on the base of the quality metrics defined
for the particular data model used within the
source. Besides considering the specific metrics
to be evaluated, the quality evaluator must also
implement efficient algorithms to “visit” the

data at the source. Furthermore it must be able
to manage changes in the data due to updates.
Whenever possible, incremental evaluation
strategies should be devised, in order to avoid
the need for a new assessment each time the
underlying source changes.

Quality Metrics
As already remarked, quality metrics de-

pend on the particular data model considered.
The quality metrics are identified as input to the
quality evaluator because it is highly desirable
that such component is parametric with respect
to the metrics.

The	Quality	Factory	for	
XML	Data	Sources

This section gives the architectural details
of a quality factory module designed for an orga-
nization that stores its data as XML documents.
As shown in Figure 3, the quality factory consists
of various logical components. Such compo-
nents can be better specified when referred to
a specific data model, and we specify them for
the XML data model. Later, we also describe
an appropriate way of defining a mapping from
the schema available for the original XML data
to the reference ontology. Finally, an example
of definition of metrics for the completeness
data quality dimension is provided.

Quality	Storage	for	XML	Data
In order for the quality factory to store

quality values, it is necessary to decide how
quality values are linked to the related data
values.

Our solution considers XML data that
satisfy some general requirements. First, if the
document is not explicitly modified, then the
order of its nodes does not change between two
subsequent accesses to it. Second, the quality
factory and the D²Q wrapper can access the
XML documents stored in a source directly,
and not through a query language like XPath or
XQuery. For example, the document-tree could
be made accessible through a DOM interface.
Finally, without loss of generality, we assume

www.manaraa.com

International Journal of Enterprise Information Systems, 3(1), �1-��, January-March 2007 ��

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

that the data at the sources is stored as a single
logical XML document.

As we suppose that the XML documents
are directly accessible, we can easily assign
a unique identifier to each piece of data. This
can be done, for instance, by associating each
node in the XML tree to a label representing
its number in a pre-order depth-first visit of the
ordered XML tree. Another way is to describe
the position of a node in the tree by means of
node addresses, as proposed in (Buneman, Da-
vidson, Fan, Hara, & Tan, 2001). Edges in an
XML tree going from an element node to another
element node or a text node can be labelled with
the index of this sub node among the children
of its parent. Thus, starting from the root, an
element or text node can be uniquely identified
from the concatenation of such indexes (e.g.,
1#2#1#4) in the path that leads to that node.
The XML model is a partially ordered tree, in
that an order is not imposed among the attribute
children of an element. However, attribute
names are unique, and thus a unique attribute
node address can be obtained by concatenating
the node address of its parent and the name of
the attribute itself (e.g., 1#2#2@name).

In order to store quality values, we use
the following approach. Each node in the XML
tree can be assigned a set of quality values,
corresponding to values of quality dimensions;
the considered quality dimensions are accuracy,
completeness, consistency, and currency. These
values are stored in an XML tree, called qual-
ity-tree; we call data-tree the XML tree storing
application data. The quality-tree conforms to
the following rules:

• For each element node e of the data-tree,
the quality tree contains an element node
qe named after e and with the same address
as e.

• For each text node t in the data-tree, the
quality tree contains an element node qt
having the same address as t, and named
“text”.

• An element node in the quality tree
contains four quality attributes that are
used to store quality values related to

the data-tree element or text node it
represents. These attributes are named
after the quality dimensions used in the
system, that is, accuracy, completeness,
consistency and currency.

•	 For each attribute node a in the data-
tree, the element node of the quality-tree
which corresponds to the parent of a will
contain four additional attributes whose
names are obtained by concatenating the
name of a, with the names of the quality
dimensions.

As an example, let us suppose that the
data-tree contains the node:

<Xelem	Xatt=”...”>...<Xelem/>

Then, the quality-tree will contain a
node:

<Xelem	
	 accuracy=v

1
	

	 completeness=v
2

	 consistency=v
3

	 currency=v
4
	

	 XattAccuracy=v
5

	 X a t t C o m p l e t e n e s s = v
6	

XattConsistency=v
7

	 XattCurrency=v
8
>

	 ...
<Xelem/>

Where v1, . . . ,v8 are appropriate quality
values.

Given the unique address of a node, this
data structure allows to retrieve its associated
quality values. The choice of representing this
data structure with an XML document is mo-
tivated by two reasons. First, as the structure
is a tree, XML is particularly well suited to
represent it. Second, as the wrapper used to
transform source data from its original model
into the D²Q model must already manipulate
XML data (those at the source itself), repre-
senting also the quality data in XML format
simplifies the wrapper, allowing for the reuse
of any XML manipulation facility already pres-
ent in it. Notice that the names of the element

www.manaraa.com

70 International Journal of Enterprise Information Systems, 3(1), �1-��, January-March 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

used to construct this tree are not significant,
only their order is. Also notice that we are not
making any assumptions here on the fact that
a certain node is actually assigned a quality
value. This depends on how quality metrics
are defined, on the reference ontology and on
the defined mapping.

Quality	Evaluator	for	XML	Data	
Sources

In order to evaluate the quality of an XML
source, given the storage model described
above, the quality evaluator module can perform
a pre-order, left-to-right, depth-first visit of the
data-tree, evaluate the quality at each node, and
construct a corresponding node in the quality-
tree, with the following steps:

• Given the root of the data-tree r, construct
the root qr of the quality-tree as an element
node having the same name as r. Then,
for each quality dimension measured on
r, add to qr an attribute named after the
quality dimension and having a value
equal to the measured value. The ad-
dresses of these attribute nodes will be @
accuracy, @completeness, @consistency,
@currency.

• Given an element or text node d, let
addr(d) =addr(p)#n be its address, where
p is the parent of the node. This means that
d is the n-th child of p. Furthermore, let
qp be the node corresponding to p in the

quality-tree. Construct an element node
qd corresponding to d as n-th child of qp,
that is with address addr(qd) = addr(qp)#n.
If d	is an element node, then qd will be
named after d. Otherwise, the name of qd
will be text. Then, for each quality dimen-
sion measured on d, add to qd an attribute
named after that quality dimension and
having value equal to the measured value.
The addresses of such attribute nodes will
be addr(qp)#n@accuracy, addr(qp)#n@
completeness, addr(qp)#n@consistency,
addr(qp)#n@currency.

• Given an attribute node a let addr(a)
=addr(p)@name be its address, where
p is the element node containing a and
name is the name of a. Let qp be the node
corresponding to p in the quality-tree.
For each quality dimension measured on
a, add to qp an attribute whose name is
constructed by concatenating the name
of the quality dimension and the name
of a, as described before. The value of
these attributes will be set to the measured
values. The addresses of the attributes
nodes added will be:

addr(qp)#n@nameAccuracy,
addr(qp)#n@nameCompleteness,
addr(qp)#n@nameConsistency,
addr(qp)#n@nameCurrency;

In this way, a new tree is constructed
which has the same structure of the data-tree

 movie

title director

Ridley ScottBlade Runner

@year=1992

movie

@currency=v4@accuracy=v1

...

movie

title

@yearAccuracy=v5@currency=v4
@yearCurrency=v8@accuracy=v1

@accuracy=v9 @currency=v12

......

...

movie

title director

Ridley ScottBlade Runner

@year=1992

movie

title director

Ridley ScottBlade Runner

@year=1992

movie

@currency=v4@accuracy=v1

...

movie

@currency=v4@accuracy=v1

...

movie

title

@yearAccuracy=v5@currency=v4
@yearCurrency=v8@accuracy=v1

@accuracy=v9 @currency=v12

......

...

movie

title

@yearAccuracy=v5@currency=v4
@yearCurrency=v8@accuracy=v1

@accuracy=v9 @currency=v12

......

...

Figure 4. An example of construction of quality-tree nodes

www.manaraa.com

International Journal of Enterprise Information Systems, 3(1), �1-��, January-March 2007 71

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

and contains the quality values measured for
it. Figure 4 shows an example of how a (por-
tion of) a quality tree is built starting from a
data-tree. Figure 4(a) shows a simple data-tree.
Attribute nodes have their names prefixed by a
’@’ symbol. Text nodes are depicted as nodes
labelled with strings in double quotes. Figure
4(b) shows a first step in the construction of the
quality-tree. An element with the same name of
the data-tree root is built, and quality attributes
are added. We show only two of such attributes
to avoid visual cluttering. The values v1,v2 and
so on are just placeholders for real quality
values. In Figure 4(c), a bigger portion of the
quality-tree has been built. Particularly, the
tree contains attribute nodes corresponding to
the “year” attribute in the data-tree, and nodes
corresponding to the title node of the data-tree.
A child of node “title” named “text” will be
the next node to be created. The dashed line
indicates that the quality node corresponding
to node “director” will be created as second
child of the node “movie“ in the quality-tree,
as it is the second child of the node “movie”
in the data-tree.

This approach has the problem of main-
taining the quality storage updated with regard
to changes in the related XML data. We assume
here that this task is performed by triggering
a new quality evaluation each time the data is
modified. Two issues must be considered. First,
whenever a node is inserted, deleted or moved,
the structural correspondence between the qual-
ity-tree and the data-tree might be partially or
completely lost. Maintaining the alignment of
the two trees only requires adding or deleting a
node in the quality-tree to reflect the changes in
the data-tree. Second, when a node is inserted,
deleted or moved and when text and attributes
values are updated, this change might have
consequences also on the quality values of
nodes that don’t take part to this transforma-
tion, depending on how the quality metrics are
defined and also on the given reference ontol-
ogy and the mapping. We plan to address these
problems in our future work.

Reference	Ontology	and	Mapping	for	
XML	Data	Sources

Before quality metrics can be introduced
for the XML model, it is necessary to detail
how a schema for this data model, such as a
DTD, can be mapped to a reference ontology.
When trying to establish a mapping between a
DTD and a conceptual model, there is gener-
ally no adopted way to put in correspondence
elements of an XML document with conceptual
level constructs. Conceptual relationships might
be represented in various ways, from simple
nesting of elements to attribute-value based
joins. XML elements can be used with differ-
ent intended meaning, including to identify an
object-type, a named relationship, or to represent
a role name in a n-ary relationship.

In the following, we make some as-
sumptions to capture the case of a reasonable
representation in which: 1) elements are put
in correspondence with types; 2) relationships
are only established by means of nesting ele-
ments, namely parent-child	relationship, and
through value-based joins, considering both
attribute values and text node values, namely
join relationships. Let us note that the DTD
formalism is expressive enough to capture some
constraints over parent-child relationships,
but cannot express almost any constraint over
join-relationships.

The following definition of restricted DTD
considers some structural limitations over the
full generality of what a DTD can express. It is
worthwhile to recall that DTD were originally
conceived to represent (textual) document struc-
ture and not data, thus some limitations, similar
to those proposed here, occur very often when
considering XML as a data model.

Restricted DTD
 A restricted DTD is a tuple D =<Tv,Tc,	tr	

,A, def ,attlist, req > where:

• Tv is a finite set of value-types
• Tc is a finite set of complex-types
• tr is a separate type called the root type
• A	is a finite set of attribute types

www.manaraa.com

72 International Journal of Enterprise Information Systems, 3(1), �1-��, January-March 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

•	 For each t ∈ Tc	∪	{tr}, def(t) is a regular
expression called the element type defini-
tion of t. The language of the regular ex-
pressions used for element type definitions
is described by the following grammar:

	 a	::=	tv	|	tc	|	a|a	|	a,a	|	a∗	|ε

Where	ε	denotes the empty content, tv ∈Tv,
tc∈Tc and the symbols “|”, “,” and *” denote
union, concatenation and Kleene closure.

•	 For each t	∈	Tc	∪{tr}, attlist(t) ⊆	A is a
set of attribute types.

Notice that in this simplified model we
explicitly disallow mixed content, that is, ele-
ments having both element and text children.
Also, value-typed elements, that are elements
containing only one text child, cannot have
attributes. With these assumptions, it is quite
straightforward to interpret elements containing
a text child as representing “named values”, as
it is for attributes.

Based on this simplified version of DTD,
and on the ontology language previously intro-
duced, we can introduce the following way of
establishing mappings between schemas and
reference ontologies.

Mapping
 Let D =<Tv,Tc,	 tr	,A, def ,attlist, req >

be a restricted DTD and Σ =< D,C,Prop,R >
an ontology. We define a mapping M between
D and Σ as a set of correspondences between
types of D and elements of Σ such that:

•	 ∀t ∈ Tc ∪{tr}, M(t) = c ∈ C
•	 ∀t ∈ Tc,∀t′ ∈ Tv	such that t′ appears in

def(t), if M(t) = c then M(t, t′) is a property
p ∈	Prop(c)

•	 ∀t ∈ Tc,∀t′ ∈A such that t′ ∈ attlist(t),
if M(t) = c	then M(t, t′) is a property p ∈
Prop(c)

Notice that, given an ontology and a
restricted DTD, multiple mappings could be
established between them.

DEFINING	QUALITY	
METRICS:	THE	CASE	OF	

COMPLETENESS
The quality factory evaluates the quality

of the data inside the XML document following
some quality metrics definitions. These metrics
must only be defined once. They are specifically
tailored for the XML data model, but they do
not directly depend on the specific domain to
which the data belongs (neither, of course, on
the specific ontology which is used to describe
such domain). The methodology we propose
can be extended to take into account ad-hoc,
domain-specific quality dimensions, and met-
rics. This only requires that the quality factory
module allows for the addition of other metrics
defined over generic reference ontology apart
from those common to all the quality factories
for XML documents.

Previously, we have formalized the con-
cept of restricted DTD and XML document valid
with respect to a restricted DTD. Furthermore,
we have defined how to establish a mapping
between a restricted DTD and a given ontology.
We have shown how to define quality metrics
for XML documents based on reference ontol-
ogy and mapping. Specifically, we describe an
example of quality metrics’ definition focus-
ing on a specific quality dimension, namely
completeness. Completeness is generically
defined as “the extent to which data are of suf-
ficient breadth, depth, and scope for the task at
hand.” (Wang & Strong, 1996). We characterize
completeness of XML data in a specific way by
introducing a set of metrics that capture vari-
ous forms of incompleteness of XML data. In
the following definitions we consider a node n
of type t	∈	Tc and we consider M(t) = c as the
corresponding concept in the ontology Σ.

Value-Completeness
 Let l be a leaf node of type t′ ∈ Tv	such

that l ∈ subel(t) and M(t, t′) = p	∈Prop(c). If p
is a mandatory property, the leaf l is said to be
value-complete if value(l) ≠ ε. Notice that leaves
corresponding to non mandatory properties are
always considered to be value-complete.

www.manaraa.com

International Journal of Enterprise Information Systems, 3(1), �1-��, January-March 2007 73

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

Leaf-Completeness
Let p be a mandatory property of c. The

node n is said to be leaf-complete w.r.t. p if it
has at least one leaf child l such that M(t, type(l))
= p. Let P = {p1, . . . , pn} ⊆ Prop(c) be all the
mandatory properties of c. The degree of leaf-
completeness of n, written dl(n) is defined as
the number of properties w.r.t. which n is leaf-
complete divided by the cardinality of P.

Parent-Child Completeness
Let r =< c,c′ > be a directed (parent-child)

relationship to which c participates with cardi-
nality 1. . .∗	with the role of parent. We say that
n is parent-child complete with respect to r if	∃	
at least one child n’ of n, such that M(type(n′)) =
c′. Let now Rpc = {r1, . . . , rk} be all the parent-
child relationships to which c participates with
cardinality 1…∗. Let Cpc = {cr1, . . . ,crk} be the
concepts having role of child in the relationships
of Rpc. The	degree	of	parent	child	completeness
of n, written dpc(n), is defined as the number of
relationships in Rpc with respect to which n is
parent-child complete, divided by the cardinality
of Rpc. More formally, let us suppose that Rpc =
{r1 =< c,cr1 >,. . . , rs =< c,crs >} ⊆Rpc is the
set of relationships such that ∀ri ∈Rpc ∃nri ∈
subel(n) such that M(type(nri)) = ci. Then:

dpc(n)= |	Rpc|/| Rpc |

Join Completeness
Let n be a node of type t and M(t) = c	the

corresponding concept in Σ. Let r	=< c: p, c′:
p′ > be a join relationship to which c partici-
pates with cardinality 1. . .∗. We say that n is
join-complete with respect to r if the following
conditions hold:

•	 the node n has a leaf child l such that M(t,
type(l)) = p and l is leaf-complete, that is
value(l) ≠ ε

•	 there exist at least one node n′ ∈ N of
type t′ such that M(t′) = c′ and n′ has a
leaf child l′ such that M(t′, type(l′)) = p′
and l is leaf complete, that is value(l) ≠
ε

•	 value(l) = value(l′).

Let now Rj ={r1 =<c : p1,cr1	:	pr1 >,. . . ,
rk <c : pk,crk	:	prk >} be all the join relationships
to which c participates with cardinality 1. . .∗.
The degree of join completeness of n, written
dj(n) is defined as the number of relationships
in Rj with respect to which n is join complete,
divided by the cardinality of Rj . More formally,
let us suppose that Rj = {r1, . . . , rs}	⊆ Rj is the
set of relationships such that∀ri	∈Rj n is join
complete w.r.t. ri. Then:

dj(n) = |	Rj |/| Rj |

R-Completeness
Given a node n, let Rpc and Rj	be respec-

tively the set of parent-child and join relation-
ships to which n participates with minimum
cardinality one, and Rpc ⊆Rpc, Rj ⊆Rj the above
defined sets of relations with respect to which
n is parent-child complete and join-complete.
Then the degree	of	parent-child	completeness	
of n, written dr(n), is defined as:

dr(n)= | Rj ∪Rpc |/| Rpc	Rj |

All the definitions provided have the
purpose of showing that quality metrics can be
defined on the basis of the reference ontology
and the mapping with the original schema (a
restricted DTD in our case) according to the
quality evaluation methodology described in
the third section.

The	Data	Quality	Broker
In the second section, we described the

main functionality of the data quality broker that
allows query processing and quality improve-
ment in cooperative systems. In this section we
provide the detailed design and implementation
of this component.

The data quality broker is implemented as a
peer-to-peer distributed service: each organiza-
tion hosts a copy of the data quality broker that
interacts with other copies (see Figure 5, left
side). Each copy of the data quality broker is
internally composed by four interacting modules
(see Figure 5, right side). The modules query
processor and transport engine are general and

www.manaraa.com

7� International Journal of Enterprise Information Systems, 3(1), �1-��, January-March 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

can be installed without modifications in each
organization. We have implemented both the
query processor and the transport engine; details
on their implementation will be provided in the
next sections.

The wrapper has to be customized for the
specific data management system and translates
the query from the language used by the broker
to that of the specific data source; it is a read-
only module that accesses data and associated
quality stored inside organizations without
modifying them.

The Propose Manager receives feedbacks
sent to organizations in order to improve their
data. This module can be customized by each
organization according to the policy inter-
nally chosen for quality improvement. As an
example, if an organization chooses to trust
quality improvement feedbacks, an automatic
update of databases can be performed on the
basis of the better data provided by improve-
ment notifications.

The query processor is responsible for
query execution. The copy of the query proces-
sor local to the user query receives the query
and splits it into queries local to the sources, on
the basis of the defined GAV mapping. Then,
the local query processor also interacts with
the local transport engine in order to send local

queries to other copies of the query processor
and receive the answers.

The transport engine provides general con-
nectivity among all data quality broker instances
in the CIS. Copies of the transport engine interact
with each other in two different scenarios:

•	 Query execution: the requesting transport
engine sends a query to the local trans-
port engine of the target data source by
executing the invoke() operation (see 5,
right side) and asynchronously collects
the answers.

•	 Quality feedback: when a requesting
transport engine has selected the best
quality result of a query, it contacts the
local transport engines to enact quality
feedback propagation. The propose()
operation (see Figure 5, right side) is
executed as a callback on each organiza-
tion, with the best quality selected data as
a parameter. The propose() can be differ-
ently implemented by each organization:
a remote transport engine simply invokes
this operation.

Another function performed by the trans-
port engine is the evaluation of the availability
of data sources that are going to be queried

DQB2

ORG2

DQB1

ORG1

DQB3

ORG3

DQB1

Query
Processor

Comparator

DATABASE

Propose
Manager

Transport
Engine

query() feedback()

ORG1

DQB2

ORG2

DQB2

ORG2

DQB1

ORG1

DQB1

ORG1

DQB3

ORG3

DQB3

ORG3

DQB1

Query
Processor

Comparator

DATABASE

Propose
Manager

Transport
Engine

query() feedback()

ORG1

Figure 5. The data quality broker as a P2P system and its internal architecture

www.manaraa.com

International Journal of Enterprise Information Systems, 3(1), �1-��, January-March 2007 7�

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

for data. This feature is encapsulated into the
transport engine as it can be easily implemented
exploiting transport engine’s communication
capabilities.

The data quality broker has been imple-
mented by web services technologies. To
implement web services, we have chosen the
J2EE 1.4 Java Platform, specifically the Java
API for XML-based Remote Procedure Call
(JAX-RPC) (JSR-101-Expert-Group, 2003).
In JAX-RPC, request/response of remote
methods is performed through the exchange
of SOAP messages over an HTTP connection.
The implementation of the query processor and
of the transport engine is better detailed in the
next sections.

QUERY	PROCESSOR:	DESIGN	
AND	 IMPLEMENTATION	

ISSUES
The query processor module of the data

quality broker implements the mediation
function of data integration architecture (Wie-
derhold, 1992). It performs query processing
according to a GAV approach, by unfolding
queries posed over a global schema. Both the
global schema and local schemas exported
by cooperating organizations are expressed
according to the D²Q model. The D²Q model
is a semi structured model that enhances the
semantics of the XML data model (Fernandez,
Malhotra, Marsh, Nagy, & Walshand, 2002) in
order to represent quality data. The schemas and
instances of the D²Q model are almost directly
translated respectively into XML Schemas and
XML documents. Such XML-based representa-
tions are then easily and intuitively queried with
the XQuery language (Boag et al., 2003). The
unfolding of an XQuery query issued on the
global schema can be performed on the basis of
well-defined mappings with local sources. The
exact definition of the mapping is described in
(Milano, Scannapieco, & Catarci, 2004).

Query	Processing	Steps
Query processing is performed according

to the sequence of steps described in Figure 6.

The entire process may be logically divided
into two phases: an unfolding phase, which
involves a global query and produces a set of
sub-queries to be sent to local organizations, and
a refolding phase, which collects the results of
local sub-queries execution, rewrites the global
query and finally executes the global query. In
the following, we briefly revise the steps of
these two phases.

The unfolding phase starts by receiving a
global query and analyzing it in order to extract
those path expressions that access data from the
integrated view. Only these parts of the query
are actually translated and sent to wrappers for
evaluation. During the path expression extrac-
tion phase, the query processor looks for path
expressions. The extraction is straightforward
most of the times1. The result of the path expres-
sion extraction phase is a number of identified
path expressions that need to be translated.
Before the translation phase, they are submitted
to a preprocessing step.

The preprocessing step decomposes
each path expression into a set of path expres-
sions whose concatenation produces a result

UNFOLDING REFOLDING

PE
Extraction

Translation

Re-Translation

Materialization

Global Query Execution

Record Matching

Global Query

Queries to
Local Sources

Results from
Local Sources
(Data+Quality)

Query Result

TE

PE
Pre-processing

Framing

Quality Filtering
UNFOLDING REFOLDING

PE
Extraction

Translation

Re-Translation

Materialization

Global Query Execution

Record Matching

Global Query

Queries to
Local Sources

Results from
Local Sources
(Data+Quality)

Query Result

PE
Pre-processing

Framing

Quality Filtering

Figure 6. Sequence of steps followed in the
query processing phase

www.manaraa.com

7� International Journal of Enterprise Information Systems, 3(1), �1-��, January-March 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

equivalent to that of the original expression.
The elements of this set are still expressed over
the global schema alphabet, and are therefore
translated into local organizations alphabets,
according to the mapping specification.

After translation, sub-queries are ready
to be executed at local sources. A further
preliminary step is needed to make possible
to re-translate their results. Usually, results of
a query contain nodes and their descendants.
Any information regarding their ancestors is
lost. We adopt a framing mechanism in order
to keep trace of ancestors and thus simplifying
the retranslation phase. After retranslation,
framing elements may be discarded and result
fragments may be safely concatenated to form
a single document.

After all the steps of the Unfolding phase
have been completed, sub-queries may be
passed to a transport engine module, which is in
charge of redirecting them to local sources for
execution and to subsequently collect results.

The Refolding phase starts with a step
in which the received results are re-translated
according to the global schema specification.
Results coming from different organizations
answering the same global path expression are
then concatenated into a single temporary file.
Each occurrence of a path expression previously

extracted from the global query is replaced with
a special path expression that accesses one of
the temporary files built during the previous
step. In this way, the global query is changed
into a query that only uses local files, and can
then be executed.

The execution of a query produces a result
that may contain duplicate copies of the same
objects coming from different sources. For
each object, a best quality representative must
be chosen or constructed. For this purpose,
results undergo a record matching phase that
identifies semantically equivalent objects and
groups them into clusters. Copies in each cluster
are compared and a best quality object is either
selected or constructed; more details on this
process can be found in (Scannapieco et al.,
2004). Finally, the results best fitting with the
user query requirements are sent back to the
user. Moreover quality feedbacks are sent to the
transport engine that is in charge of propagating
them throughout the system.

The query processor has been imple-
mented as a Java application. Figure 7 shows
the main components; the phases of query
processing that are executed by each component
module are also represented.

The query parser performs the first query
processing steps. To implement it, a parser for

UNFOLDING REFOLDING

Query parser

Translator/
ReTranslator

IPSI-XQ

Record Matcher

PE Extraction
PE Pre-
processing

Global Query
Execution

Record
Matching

Quality Filtering
Quality
Filtering

Translation
Framing
Re-Translation
Materialization

Figure 7. Internal modules of the query processor

www.manaraa.com

International Journal of Enterprise Information Systems, 3(1), �1-��, January-March 2007 77

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

the XQuery language has been generated with
the help of the JavaCC tools. The translation/re-
translator module is in charge of the translation
and retranslation of queries and their results. For
query execution a third-party query engine may
be used. The engine used in our implementation
is IPSI-XQ (IPSI-XQ, n.d.). Let us note that we
made IPSI-XQ quality-aware by adding some
quality functions to it. These functions are writ-
ten in XQuery, and allow to access quality data;
they are simply added to the query prolog of
each query submitted to the engine.

TRANSPORT	ENGINE:	 DESIGN	
AND	 IMPLEMENTATION	

ISSUES
The transport engine component of the

data quality broker provides the connectivity and
communication infrastructure of the DaQuin-
CIS system. In Figure 8 the internal components
of the transport engine are shown; the sequence
of interactions among such modules is also de-
picted. The availability	tester	module works in
background continuously executing connectiv-
ity tests with servers from other organizations.
It executes a ping function on the servers in the
cooperative system opening HTTP connections
on them. The transport	engine	interface is the
module that interfaces the query processor and
the transport engine. Specifically, it uses a data
structure to store queries and query results,
once the latter have been gathered from each
organization. The data structure is organized
as an array: each element is representative of
a single query execution plan and is composed
by a list of queries that are specific of such a
plan. Such queries are passed by the query
processor (step 1). Then, the transport	engine	
interface activates the execute-query module
with plans as input parameters (step 2). The
execute-query interacts with the availability	
tester module that performs an availability check
of the sources involved in the query execution
(step 3). Then, the execute-query activates the
Web	service	invoker module that carries out the
calls to the involved organizations (step 4). The
call is performed in an asynchronous way by

means of suitable proxy SOAP client. Before
invoking data management web services, an
availability check is performed by the Avail-
ability Tester module. When the result of the
different plans are sent back, the execute-qQuery
module stores them in a specific data structure
and gives it to the transport	engine	interface
(step 5) that, in turn, gives it back to the query
processor (step 6). The data structure is very
similar to the input one; the main difference is
the substitution of the query field with a special
record containing data and associated quality
provided as query answers.

Notice that the same interaction among
modules shown in Figure 8 occurs when quality
feedbacks need to be propagated. The query pro-
cessor selects the best quality copies among the
ones provided as query answers and then sends
the result back to the transport engine Interface
that activates the execute-query module with the
best quality copies and the organizations to be
notified about them as input parameters. The
best quality copies are then sent by the Web	ser-
vice	invoker. On the receiver organization side,
the execute-query module notifies the propose	
manager modules of involved organizations
about the better quality data available in the
system, thus implementing the quality feed-
back functionality that the data quality broker
provides at query processing time. Also notice
that the execute-query module, on the sender
organization side interacts with the availability	
tester modules; this makes quality notification
to not be performed in a one-step process.
Instead, a transaction starts that commits only
when the set of sources that has to be notified,
is exhausted.

EXPERIMENTS
In this section, we first show the experi-

mental methodology, and then we show quality
improvement experiments and performance
experiments.

Experimental	Methodology
We perform a set of experiments in order to

test the quality improvement functionality of the

www.manaraa.com

7� International Journal of Enterprise Information Systems, 3(1), �1-��, January-March 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

data quality broker and its performance features.
We used two real data sets, each owned by an
Italian public administration agency, namely:
1) the first data set is owned by the Italian So-
cial Security Agency, referred to as INPS (in
Italian, Istituto Nazionale Previdenza Sociale).
The size of the database is approximately 1.5
million records; 2) the second data set is owned
by the Chambers of Commerce, referred to as
CoC (in Italian, Camere di Commercio). The
size of the database is approximately 8 million
records.

Some data are agency-specific informa-
tion about businesses (e.g., employees social
insurance taxes, tax reports, and balance sheets),
whereas others are common to both agencies.
Common items include one or more identifiers,
headquarter and branches addresses, legal form,

main economic activity, number of employees
and contractors, and information about the
owners or partners.

As far as quality improvement experi-
ments, we have associated quality values to
the INPS and CoC databases. Specifically, we
have associated completeness and currency
quality values to each field value. Complete-
ness refers to the presence of a value for a
mandatory field. As far as currency values,
timestamps were already associated to data
values in the two databases; such timestamps
refer to the last date when data were reported
as current. We have calculated the degree of
overlapping of the two databases that is equal
to about 970,000 records.

As far as performance experiments, a P2P
environment has been simulated. Each data

Transport Engine
Interface

Execute-Query

Web Service
Invoker

Threads Request/
Response

Request/
Response

Request/
Response

Availability
Tester

(2)

(�)

(�)

QP

(�)

Propose
Manager

TEi
(1)

(3)

Transport Engine
Interface

Execute-Query

Web Service
Invoker

Threads Request/
Response

Request/
Response

Request/
Response

Web Service
Invoker

Threads Request/
Response

Request/
Response

Request/
Response

Availability
Tester

(2)

(�)

(�)

QP

(�)

Propose
Manager

TEi
(1)

(3)

Figure 8. Internal modules of the transport engine of organization i

www.manaraa.com

International Journal of Enterprise Information Systems, 3(1), �1-��, January-March 2007 7�

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

source has been wrapped by a web service;
such web services have been deployed on dif-
ferent computers connected by a LAN at 100
Mbps and interacting with each other using the
SOAP protocol.

Quality	Improvement	Experiments
The experimental setting consists of the

two described real data bases plus a third source
that has the purpose of querying the first two
sources and cooperates with them. We have
considered how this CIS behaves with regards
to the quality of its data, in two specific cases. In
the first case, a “standard” system is analyzed;
this system does not perform any quality based
check or improvement action. In the second
case, the CIS uses the data quality broker
functionality of query answering and quality
improving. Values for the frequency of queries
and updates on the data bases and average query
result size are derived from real use cases. We
have estimated the frequency of changes in
tuples stored in the two databases to be around
5000 tuples per week. Average query frequency
and query result size are, respectively, of 3000
queries per week and 5000 tuples per query.
In a real setting, updates are distributed over
a week. Anyway, to simplify our experimental
setting, we have chosen to limit updates to the
beginning of each week.

We consider how the quality of the en-
tire CIS changes throughout a period of five
weeks. Note that such variations are due to
both updates on the databases and exchanges
of data between them. In the standard system,
these exchanges are only due to queries. With
the data quality broker, each time a query is
performed, an improvement feedback may be
propagated. For both the data quality broker and
the standard system, we calculate the overall
Quality of the system, as the percentage of the
high quality tuples in the system. We adopt
simplified quality metrics by considering that
a tuple has high quality if it is complete and
current on all its fields. Conversely, a tuple has
low quality if it is not complete and/or current
on some fields.

To clarify how the two systems react to
updates, we have considered an update set
composed by both high quality and bad quality
tuples equally distributed. In Figure 9, the behav-
iors of the data quality broker and the standard
system with respect to quality improvement are
shown. In the standard system (Figure 9.a), the
overall quality is roughly constant, due to the
same number of high quality and low quality
tuples spread in the system. Instead, with the
data quality broker (Figure 9.b), the improve-
ment of quality in each period is enhanced by
data quality feedbacks performed by the system
and low quality data are prevented to spread.
This causes a growing trend of the data quality
broker curve, in spite of low quality inserted
tuples. The actual improvement is about 0.12%;
given that the size of the two databases is about
9.500.000 tuples, the improvement consists of
about 11.500 tuples.

Performance	Experiments
For the performance set of experiments,

we have considered the data quality broker and
the standard system behavior with fictitious
sources, in order to vary some parameters
influencing performance experiments.

The first performance experiment shows
the time overhead of the data quality broker
system with respect to the standard system. In
such experiment we draw a normalized transac-
tion time defined by the fraction:

StandardElaborationTime

The elaboration time is the time required
by the system for processing a query. The nor-
malized transaction time is drawn when varying
the degree of overlapping of data sources. The
overlapping degree significantly influences
the data quality broker. Indeed, the data qual-
ity broker accomplishes its functionalities in
contexts where data sources overlap and such
an overlapping can be exploited to improve
the quality of data. The Figure 10 (top) shows
how the normalized transaction time varies in
dependence on the percentage of data sources

www.manaraa.com

�0 International Journal of Enterprise Information Systems, 3(1), �1-��, January-March 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

overlapping with two fixed query result sizes,
namely q1=1000 tuples, q2= 5000 tuples. The
number of overlapping sources is fixed to 3. This
means that once a query is posed over the system,
three sources have data that can be provided as
answer to the query, though the system can have
a larger number of sources. Figure 10 shows the
actual time overhead of the data quality broker
systems with respect to a standard system. The
data quality broker system has an acceptable
time overhead. The worst depicted case is for
the query result size q2=5000 and a percentage
of overlapping equal to 40%; in such a case,

there is a 50% time overhead with respect to
the standard system. The second performance
experiment shows the normalized transaction
time with query size varying (see Figure 10 bot-
tom). For a fixed degree of overlapping equals
to 15%, we draw the normalized transaction
time for three different numbers of overlapping
organizations, namely n1=3, n2=4 and n3=5.
This experiment shows the behavior of the data
quality broker when increasing the number of
organizations and the size of queries. Specifi-
cally, the normalized transaction time increases
slowly, with an almost linear trend. The posi-

7�,�

7�,��

7�,�

7�,��

7�,7

7�,7�

7�,�

7�,��

7�,�

7�,��

�0

0 7 1� 21 2� 3�

Days

Q
ua

lit
y

of
 th

e
C

IS
 (%

)

7�,�

7�,��

7�,�

7�,��

7�,7

7�,7�

7�,�

7�,��

7�,�

7�,��

�0

0 7 1� 21 2� 3�

Days

Q
ua

lit
y

of
 th

e
C

IS
 (%

)

(a) Data quality improvement in the standard system

b) Data quality improvement with the data quality broker

Figure 9. Data quality improvement in the standard system and with the data quality broker

www.manaraa.com

International Journal of Enterprise Information Systems, 3(1), �1-��, January-March 2007 �1

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

tive result shown in Figure 10 is that when the
number of overlapping data sources increases,
the trend does not substantially change.

RELATED	WORK
The quality factory deals with the problem

of measuring quality of data. Data quality is
typically characterized by a set of dimensions,
for which various definitions have been pro-
posed, including (Wang, 1998), (M. Bovee and
Srivastava, R.P. and Mak, B.R., 2001) and (Liu
& Chi, 2002). In (Scannapieco & Batini, 2004),
a set of metrics for characterizing completeness
in the relational model are described, while in
(Naumann, Freytag, & Leser, 2004) complete-
ness of sources in data integration settings is
evaluated. Such definitions do not regard XML

data. The problem of considering the quality of
an XML document is considered by the proposal
of a normal form for XML (Arenas & Libkin,
2004), and by new more expressive data models
that better allow XML queries specification and
execution (Jagadish, Lakshmanan, Scanna-
pieco, Srivastava, & Wiwatwattana, 2004). We
have instead described an original methodology
for evaluating the quality of XML data sources,
laying the foundations for a full characterization
of the quality of XML data.

Quality-aware querying, performed by
the data quality broker, is a problem explicitly
addressed in a few works. In (Naumann, Leser,
& Freytag, 1999), an algorithm for querying for
best quality data in a LAV integration system is
proposed. We share with such a work the idea

0

0,2

0,�

0,�

0,�

1

0 � 10 1� 20 2� 30 3� �0
P e r c e nt a ge of ov e r l a ppi ng

�000 records 1000 records

0
0,2
0,�
0,�
0,�

1

�000 7000 �000 11000 13000 1�000
Query Size

N
or

m
al

iz
ed

 T
ra

ns
ac

tio
n

Ti
m

e

3 Overlapping Organizations � Overlapping Organizations
� Overlapping Organizations

Figure 10. Normalized transaction time wrt percentage of overlapping data sources (top) and
normalized transaction time wrt query sizes (bottom)

N
or

m
al

iz
ed

 T
ra

ns
ac

tio
n

Ti
m

e

www.manaraa.com

�2 International Journal of Enterprise Information Systems, 3(1), �1-��, January-March 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

of querying for best quality data; however, the
main difference is the semantics of our system:
our aim is not only querying, but also improv-
ing quality of data. To such a scope, the query
processing step has specific semantics that
allows for performing quality improvements
on query results.

The MIT Context Interchange project
(COIN) (Bressan et al., 1997) is based on the
idea of modeling a “context” for integrating
heterogeneous sources. Such a context consists
of metadata that allows for solving problems,
such as instance level conflicts that may occur
in the data integration phase. The data quality
broker differs mainly for considering a much
more general and explicit way of representing
quality of data. Instead, the COIN approach
focuses only on one aspect of data quality,
namely data interpretability.

In (Mihaila, Raschid, & Vidal, 2000),
the basic idea is querying web data sources by
selecting them on the basis of quality values on
provided data. Specifically, the authors suggest
publishing metadata, characterizing the quality
of data at the sources. Such metadata are used for
ranking sources and a language to select sources
is also proposed. In the data quality broker sys-
tem, we associate quality to data (at different
granularity levels) rather than to a source as a
whole. This makes things more difficult, but
allows posing more specific queries.

As an e-government initiative, the Italian
Public Administration in 1999 started a project,
called “Services to Businesses”, which involved
extensive data reconciliation and cleaning
(Bertoletti, Missier, Scannapieco, Aimetti, &
Batini, 2005). The approach followed in this
project consisted of three different steps: 1)
linking once the databases of three major Ital-
ian public administrations, by performing a
record matching process; 2) correcting matching
pairs, and 3) maintaining such status of aligned
records in the three databases by centralizing
record updates and insertions only on one of
the three databases. This required a substantial
re-engineering of administrative processes, with
high costs and many internal changes for each
single administration. Differently from the ap-

proach adopted in the “Services to Businesses”
project, the data quality broker is implemented
in a completely distributed way through P2P
architecture, thus avoiding bottlenecks on a
single cooperating organization. Even more
important, no kind of re-engineering actions
need to be engaged when choosing to use the
data quality broker, as query answering and
quality improvement can be performed with a
very low impact in terms of changes on coop-
erating organizations.

CONCLUDING	 REMARKS
We provided two major contributions.

First, we described the issues related to the
implementation of a quality factory in coop-
erative information systems, where a quality
factory has the purpose of evaluating the quality
provided by each cooperating organization. A
general methodology for designing a quality
factory is proposed and the design of a specific
quality factory for XML data is described. Sec-
ond, we provided the implementation details of
the data quality broker module, responsible for
data and quality exchanges in CIS.

The data quality broker has been imple-
mented as a peer-to-peer system. Specifically,
we have described the detailed design and
implementation of two modules composing
the data quality broker, namely the query pro-
cessor and the transport engine. We have also
described some experiments that validate our
approach with respect to quality improvement
effectiveness. Such experiments show that the
data quality broker succeeds in controlling and
improving quality of data in a CIS. Moreover,
when compared to a standard system, that is,
a system with no quality management fea-
tures, the data quality broker exhibits limited
performance degradation. Such performance
degradation is not a serious problem in specific
scenarios, such as e-government, in which the
quality of data is the main enabling issue for
service provisioning. Indeed, we remark that
such scenarios are the reference ones for our
system. Future works will address two main
lines: 1) the quality factory will be extended
with further metrics for quality measuring of

www.manaraa.com

International Journal of Enterprise Information Systems, 3(1), �1-��, January-March 2007 �3

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

XML data: besides completeness, we aim to
investigate also metrics for accuracy and con-
sistency; 2) the data quality broker will be more
extensively validated, in particular by pushing
the adoption of the proposed P2P system in some
Italian e-government pilot initiatives.

REFERENCES
Arenas, M., & Libkin, L. (2004). A Normal

Form for XML Documents. ACM Trans.
Database Syst., 29.

Baader, F., Calvanese, D., McGuinness, D.L.,
Nardi, D., & Patel-Schneider, P.F. (2003).
The	description	logic	handbook:	Theory,	
implementation,	and	applications. Cam-
bridge University Press.

Bertoletti, M., Missier, P., Scannapieco, M.,
Aimetti, P., & Batini, C. (2005). Improv-
ing government-to-business	relationships	
through	data	reconciliation	and	process	
re-engineering. In R. Wang (Ed.), Ad-
vances in Management Information Sys-
tems, Information Quality Monograph
(AMIS-IQ) . Sharpe, M.E.

Boag, S., Chamberlin, D., Fernandez, M.,
Florescu, D., Robie, J., & Simeon, J.
(2003, November). XQuery 1.0: An
XML Query Language. W3C Work-
ing Draft. Available from http:///www.
w3.org/TR/xquery.

Bouzeghoub, M., & Lenzerini, M. (2001).
Special Issue on Data Extraction, Clean-
ing, and Reconciliation. Information
Systems, 26(8).

Bressan, S., Goh, C., Fynn, K., Jakobisiak, M.,
Hussein, K., Kon, K., et al. (1997). The
COntext INterchange Mediator Proto-
type. In Proceedings ACM SIGMOD
International Conference on Manage-
ment of Data (SIGMOD 1997).

Buneman, P., Davidson, S., Fan, W., Hara, C.,
& Tan, W. (2001). Keys for XML. In
Proceedings of WWW 2001.

Conrad, R., Scheffner, D., & Freytag, J. (2000).
Xml Conceptual Modeling Using UML.
In 19th International Conference on
Conceptual Modeling.

Fernandez, M., Malhotra, A., Marsh, J., Nagy,

M., & Walshand, N. (2002, Novem-
ber). XQuery 1.0 and XPath 2.0 Data
Model. W3C Working Draft. Available
from http:///www.w3.org/TR/query-
datamodel.

Hull, R., & King, R. (1987). Semantic database
modeling: Survey, applications, and re-
search issues. ACM Comput. Surv., 19(3),
201-260. IPSI-XQ. (n.d.). Available from
http://ipsi.fhg.de/oasys/projects/ ipsi-
xq/index e.html.

Jagadish, H., Lakshmanan, L., Scannapieco,
M., Srivastava, D., & Wiwatwattana, N.
(2004,). Colorful XML: One Hierarchy
Isn’t Enough. In Proceedings of the 2004
ACM SIGMOD Conference (SIGMOD
2004). JSR-101-Expert-Group. (2003,
October). Java(tm) API for XML based
Remote Procedure Call (jax-rpc) Speci-
fication Version 1.1. Sun Microsystems,
Inc.

Lenzerini, M. (2002). Data Integration: A Theo-
retical Perspective. In Proceedings	of	the	
21st ACM Symposium On Principles Of
Database Systems (PODS 2002).

Liu, L., & Chi, L. (2002). Evolutionary Data
Quality. In 7th International Conference
on Information Quality.

M. Bovee and Srivastava, R.P. and Mak, B.R.
(2001). A conceptual framework and
belief-function approach to assessing
overall information quality. In Proceed-
ings of the 6th International Conference
on Information Quality.

Mecella, M., Scannapieco, M., Virgillito, A.,
Baldoni, R., Catarci, T., & Batini, C.
(2003). The DaQuinCIS broker: Query-
ing data and their quality in cooperative
information systems. Journal of Data
Semantics, 1(1. Shorter version also ap-
peared in CoopIS 2002.).

Mihaila, G., Raschid, L., & Vidal, M. (2000).
Using quality of data metadata for source
selection and ranking. In Proceedings	of	
the 3rd International Workshop on the
Web and Databases (WebDb’00).

Milano, D., Scannapieco, M., & Catarci, T.
(2004). Quality-driven query processing

www.manaraa.com

�� International Journal of Enterprise Information Systems, 3(1), �1-��, January-March 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

Diego Milano obtained his master's degree in computer engineering from the Università di Roma “La
Sapienza”, where he is currently a PhD student. His main research interests include: XML object identifi-
cation, data cleaning and data integration.

Dr. Monica Scannapieco obtained her master's degree and PhD in Computer Engineering from the Uni-
versità di Roma “La Sapienza”, Italy. She is researcher at ISTAT — Italian National Statistics Institute
- and lecturer at the Dipartimento di Informatica e Sistemistica of the Università di Roma La Sapienza.
Her research interests include data quality models and techniques, cooperative systems for e-government,
XML data modeling and querying.
	
Prof. Tiziana Catarci obtained her master's degree and PhD in Computer Engineering from the Università
di Roma “La Sapienza”, Italy, where she is currently full professor. Tiziana Catarci's main research interests
are	in	theoretical	and	application	oriented	aspects	of	visual	formalisms	for	databases,	database	design,	
cooperative information systems, user interfaces, usability, and Web access.

of xquery queries. In Proceedings	of	the	
International Workshop on Data and
Information Quality (DIQ 2004).

Milano, D., Scannapieco, M., & Catarci, T.
(2005). Using ontologies for xml data
cleaning. In Second INTEROP dissemina-
tion	workshop.

Mylopoulos, J., & Papazoglou, M. (1997). Co-
operative information systems (Special
Issue). IEEE Expert Intelligent Systems
&	Their	Applications, 12(5).

Naumann, F., Freytag, J., & Leser, U. (2004).
Completeness of integrated information
sources. Information Systems, 29(7).

Naumann, F., Leser, U., & Freytag, J. (1999).
Quality-driven integration of heterog-
enous information systems. In Proceed-
ings of 25th International Conference on
Very Large Data Bases (VLDB’99).

Scannapieco, M., & Batini, C. (2004). Com-
pleteness in the relational model: A
comprehensive framework. In 9th In-
ternational Conference on Information
Quality.

Scannapieco, M., Virgillito, A., Marchetti, M.,
Mecella, M., & Baldoni, R. (2004). The
DaQuinCIS architecture: A platform for
exchanging and improving data quality

in cooperative information systems. In-
formation Systems, 29(7).

Ullman, J. (1997). Information integration using
logical views. In Proceedings of the 6th
International Conference on Database
Theory (ICDT ’97).

Wang, R. (1998). A product perspective on total
data qualitymanagement. Communica-
tions of the ACM, 41(2).

Wang, R., & Strong, D. (1996). Beyond ac-
curacy: What data quality means to data
consumers. Journal of Management
Information Systems, 12(4).

Wiederhold, G. (1992). Mediators in the ar-
chitecture of future information systems.
IEEE Computer, 25(3).

ENDNOTE
1 In some cases, a nested expression may

contain direct or indirect references to
data in the global view. Such cases must
be handled in a slightly different way.
Our current approach is to split any path
expression containing a problematic step
and to treat the two parts separately. Spe-
cifically, when reverse steps are involved,
they must be taken into account to perform
the splitting properly.

www.manaraa.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

